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The solution of the steady-state Navier-Stokes equations in three dimensions has been 
obtained by a numerical method for the problem of natural convection in a rectangular 
cavity as a result of differential side heating. In the past, this problem has generally 
been treated as though it were two-dimensional. The solutions explore the three- 
dimensional motion generated by the presence of no-slip adiabatic end walls. For 
Ra = lo4, the three-dimensional motion is shown to be the result of the inertial inter- 
action of the rotating flow with the stationary walls together with a contribution 
arising from buoyancy forces generated by longitudinal temperature gradients. The 
inertial effect is inversely dependent on the Prandtl number, whereas the thermal 
effect is nearly constant. For higher values of Ra, multiple longitudinal flows develop 
which are a delicate function of Ra, Pr and the cavity aspect ratios. 

1. Introduction 
Fluid motion in nature is three-dimensional. However, the limitations imposed by 

available techniques of mathematical analysis and physical experimentation have, 
more often than not, forced fluid dynamists to explore only those flows that are 
believed to be capable of approximation by a two-dimensional model. Such flows have 
been simulated in the laboratory in a manner which accentuates their two-dimension- 
ality, and have been subjected to various two-dimensional methods of analysis. With 
the passage of time, the three-dimensionality of the real flow tends to become forgotten. 
The fully three-dimensional flows - those which are not capable of approximation by a 
two-dimensional model, and which constitute the bulk of reality - remain beyond the 
realms of detailed investigation. 

Recently, however, several numerical methods for the solution of the three-dimen- 
sional Navier-Stokes equations have been developed. Aziz (1965), Chorin (1968), 
Williams (1969) and Mallinson & de Vahl Davis (1973) have described methods for the 
calculation of internal flows driven by buoyancy forces. Methods applicable to external 
flows have been presented by Hirt & Cook (1972) and Thompson, Shanks & Wu (1974). 
Turbulent three-dimensional flow in channels has been modelled by Deardorff (1970) 
and Schumann (1973); Patanker & Spalding (1972) and Patanker, Pratap & Spalding 
(1974, 1975) have developed a procedure for the prediction of laminar and turbulent 
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flow fields in straight and curved pipes. Each of these methods can, within the limita- 
tions of the approximations involved, produce solutions which describe complete 
flows in considerable detail and therefore has the potential for providing a powerful 
means for exploring the three-dimensional world. 

In  this paper, the method described by Mallinson & de Vahl Davis (1973) has been 
applied to an example of buoyancy-driven flow inside a closed box subjected to 
differential side heating. The problem, hereafter referred to as ‘the window cavity’, is 
an abstraction of a double-glazed window, or of an insulating wall cavity, and has 
previously been assumed to be two-dimensional. The basic form of the flow is a re- 
circulating roll, the axis of which is horizontal and parallel to the heated walls. 

The two-dimensional flow depends on the cross-sectional heightlwidth ratio h, and 
the Rayleigh and Prandtl numbers Ra and Pr. If h, is large, the flow in the mid-height 
region is nearly one-dimensional and is amenable to theoretical analysis. Batchelor 
(1954) obtained a series solution applicable to weak flow when conduction is the pre- 
dominant mode of heat transfer (Ra < 103). Boundary-layer models were postulated 
by Batchelor (1954) and Gill (1966) for higher Ra, convection-dominated flows. Near 
Ra = lo5, the flow becomes unstable; this results in the generation of secondary rolls 
embedded in the low Rayleigh number single-roll base flow. This instability has been 
the subject of linear stability analysis: Gershuni (1953), Vest & Arpaci (1969) and Gill 
& Davey (1969), for example, have estimated the conditions leading to secondary 
motion and the wavelength of the motion a t  the onset of instability. 

Many numerical studies of this problem have been made. For a given number of 
mesh points, the greatest accuracy is achieved if the solution domain is a cube, or in the 
case of a two-dimensional model, a square. The case h, = 1 was therefore included in 
the initial numerical investigations conducted by Poots (1958), Wilkes & Churchill 
(1966), Elder (1966) and de Vahl Davis (1968). As computing methods and machinery 
have improved, an increasing number of solutions have been published with h, B 1 
(e.g. Rube1 & Landis 1969; Thomas & de Vahl Davis 1970; de Vahl Davis & Mallinson 
1975). Numerical two-dimensional solutions have now covered the conduction and 
boundary-layer regimes up to the onset of temporal instability in the vicinity of 
Ra = lo7. Recently, Cormack, Leal & Seinfeld (1974) and Cormack, Leal & Imberger 
(1974) have presented numerical and analytical solutions respectively for the case 
h, < 1,  which is relevant to the prediction of the dispersion of pollutants and heat 
waste in estuaries. 

Experimental investigations, of which Brooks & Probert (1972) provide a summary, 
implicitly assume that the flow field is two-dimensional, Invariably, the isothermal 
walls are opaque and hinder the observation of three-dimensional flows while the 
integrating nature of optical methods for detecting the temperature field precludes 
three-dimensional sensitivity. As a result, virtually nothing is known of the form or 
significance of the three-dimensional effects which must occur in a real, or experimental, 
cavity. 

The validity of the two-dimensional assumption and the form and significance of 
any three-dimensional effects that may in fact occur are the subjects of this investiga- 
tion. 
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4 
FIGURE 1. Cavity dimensions and orientation. 

2. Mathematical formulation and solution method 
The box, a rectangular parallelepiped, is assumed to be filled with a viscous heat- 

conducting fluid, and the conditions are such that the familiar Boussinesq (1  903) 
approximations may be made. The origin of a rectangular Cartesian co-ordinate 
system is placed at  an upper corner of the box and the axes are orientated as illustrated 
in figure 1. Choosing L, the size of the box in the x direction, as the scale factor for 
length, the shape of the box is determined by the non-dimensional aspect ratios h, and 
ha. The use of  L 2 / K ,  K / L  and po K ~ / L ~  (where K is the coefficient of thermal diffusivity and 
po the density of the fluid a t  a reference temperature To) as scale factors for time, 
velocity and pressure, and the introduction o f  8 = (T - T,)/(T, - T,) (where T is the 
local temperature of the fluid and Th and T, are the temperatures of the hot a,nd cold 
boundaries) permit the equations representing the conservation of momentum, 
mass and energy for steady motion to be written as 

( V x v ) x v =  -Vp-RaPr8k+PrV2v,  (1) 

v.v = 0, v . ( q  = v20. (2),  (3) 

The velocity vector has been denoted by v = ui + vj + w k  (where i ,  j ,  k are unit 
vectors in the x, y and z directions respectively); p is the perturbation of the total 
pressure from the first-order hydrostatic value; Ra = gp(Th - T,) L 3 / ~ v  and Pr = v / K  

are the Rayleigh and Prandtl numbers, where /3 and v are respectively the coefficients 
of volumetric expansion and kinematic viscosity and g is the gravitational acceleration 
(the direction of which is parallel to k) .  

i + c2 j + Q k, 
the vorticity vector, and a vector + = i + $2 j + $3 k ,  which is a solenoidal potential 
for v. Equations ( 1 )  and (2) are then replaced by 

It is convenient to recast the governing equations in terms of < = 

Pr-l[V x (< x v)]  = - Ra (V x 8k) +V2< (4) 

and ( 5 )  
1-2 
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The boundaries a t  x = 0 and x = 1 are assumed to be isothermal and held at constant 
temperatures T, and Th respectively. All other boundaries are assumed to be adiabatic. 

The boundary conditions for J, and t; are derived from the velocity boundary con- 
ditions. Each boundary is assumed to be impermeable and a t  rest. As explained by 
Hirasaki & Hellums (1968), the condition of impermeability implies that J, is normal 
to the boundary and that the normal derivative of its normal component is zero; 
i.e. at  x = 0, for example, 

a+lpx = $2 = k3 = 0. (6) 

The no-slip condition at the stationary boundaries, together with (6), implies condi- 
tions on < exemplified by 

el = 0, (7) 

y2 = - a2$2px2, = - a2+3px2 (8) 
on x = 0. 

Equations (6) are used as boundary conditions for the solution of (5) for J,, while 
(7) and, after suitable integration, (8) are used as boundary conditions for the solution 
of (4) for t;. 

The window cavity exhibits symmetry about the plane y = &,. It is necessary, 
therefore, to obtain solutions over only one half of the cavity. The plane y = Bh, is 
adiabatic; (6) still apply; and (7)  and (8) are replaced by el = c3 = 0 and i3C2/ay = 0 at 

Complete details of the component partial differential equations comprising the 
system (I) ,  (4) and ( 5 ) ,  the vector-potential boundary conditions and the numerical 
solution method were presented by Mallinson & de Vahl Davis (1973). Briefly, the 
method relies on approaching the steady solution of (3)-(5) via a false transient defined 

(9) 

(10), (11) 

y = +h,. 

by 
aTlat;/at = Pr-lV x (< x v) - Ra(V x 8k) + V2t;, 

a+pt = v2+ + <, aept = - v. (ve) + v2e. 

A set of finite-difference equations is generated by replacing the derivative terms in 
(9)-( 1 1) and in the boundary conditions by second-order central-difference approxima- 
tions. The iterative solution procedure is essentially an alternating direction implicit 
approximation to the above set of parabolic equations. The parameter a5 and the 
magnitude of the time step 6t may be selected to enhance the approach to  a steady 
state. All the solutions presented herein were obtained with a5 = 0.05 and 6t = Z6x2 
(where 6x is the smallest mesh interval). 

Results have been obtained for a reasonably wide range of parameter values. With 
the assumption of symmetry about the y = $h, plane, a cubical solution domain (which 
yields the greatest accuracy for a given number of mesh points) corresponds to a 
cavity with h, = 2 and h, = 1 .  The present investigation was begun by obtaining a 
series of solutions with these aspect ratios, with Pr = 1 and with Ra increasing up to 
1.5 x lo5. These solutions were later augmented by a similar series with Pr = 0.71 and 
lo4 < Ra < 106 so that the results were applicable to air-filled cavities. Isolated solu- 
tions with different values of h,, h, and Pr extended the range of the investigation to a 
region broadly defined by 0 < Ra 6 lo6, 0-1 < Pr < 100, 1 < h, < 5 and 1 < h, 6 5. 
The case h, = 5 and h, = 5 was included to provide the closest approximation to a real 
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window cavity that could be achieved within the limitations imposed by the available 
computing equipment. 

These limitations are felt in terms of the maximum resolution that can be achieved 
by the finite-difference mesh. The solutions presented in this paper were computed on 
an IBM 360/50 and on a PDP-10: on each machine the practical upper limit to the 
number of mesh points was approximately 6000. Consequently, the majority of solu- 
tions were obtained with a 15 x 15 x 15 mesh, which was considered to represent a 
reasonable compromise between accuracy and computing cost, bearing in mind the 
fact that the exploratory nature of the investigation demanded a larger number of 
solutions rather than extreme accuracy. Naturally, the number of mesh points was 
increased in cases where better resolution was necessary (such as a cavity with large 
h, or ha). Each solution was obtained after approximately i00 iterations, which re- 
quired about 30 min of central processor time on the PDP-10 or approximately 50 min 
on the IBM 360/50. 

The accuracy of the solutions is, of course, of considerable importance. Unfortu- 
nately, because of their demands on computer storage and time, it was not practicable 
to  explore the effects on the truncat'ion errors of further mesh refinement in the three- 
dimensional solutions. 

Some two-dimensional solutions were obtained using 15 x 15 and 51 x 51 meshes. It 
is more convenient to discuss the quantitative results below, but it may be noted here 
that in no case did the form of the solution (including some quite complex features) 
change with the mesh size. Quantitative results are of declining quality with increasing 
Ra, but the quantitative solutions are reliable in all cases. 

3. Solution display methods 
In  the case of a two-dimensional steady flow, the streamlines correspond to lines of 

constant stream function and a single contour map can give a complete portrayal of 
the flow field. For a three-dimensional flow a similar presentation is not possible. The 
description of a three-dimensional vector field in terms of two-dimensional diagrams is 
not easy. Moreover, the relationship between j r  and the streamlines is much more 
complicated than for two-dimensionaI flow. 

Each solution is determined by four fields, namely and 8. I n  addition, the 
components of v and < can be derived from +, making a total of ten fields of numerical 
data from which features of the flow can be deduced. 

One approach to the display of the data is to take plane slices of the field and con- 
struct contour maps of the variation over each slice of the solution variables (e.g. Aziz 
1965). However, this technique is really only successful in the description of scalar 
quantities such as 8 and it is extremely difficult to construct a complete image of a 
vector field from a sequence of plane-slice contour maps of each of its components. Even 
in the description of a scalar, the presentation is hindered by the large number of 
contour maps that are usually generated. 

In  this paper, contour maps are used solely for the display of scalar fields. Each map 
is drawn as if the slice has been viewed by looking in the positive direction of the co- 
ordinate axis normal to the slice. 

The field lines of a vector field are fundamental to the description of that field. For 
example, the field lines of the velocity field are the streamlines, which in the case of 

$2, 
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steady flow are identical to particle tracks. Holst & Aziz (1972) computed particle 
tracks from their three-dimensional solutions for transient natural convection in a 
porous medium but presented the results only in terms of two-dimensional elevations. 
During the present investigation, their method was improved and a perspective 
projection incorporated to provide a particularly effective method for the interpreta- 
tion of three-dimensional solutions. 

The components of the vector potential a t  any point on a particle track are obtained 
by interpolation from the values at the surrounding mesh points. The velocity 
components are found from V x +, and increments in the particle position are ob- 
tained by integration using a fourth-order Runge-Kutta method described in detail by 
Romanelli (1960). His algorithm, which is an adaptation of a method described by Gill 
(1951), has been optimized with respect to computational efficiency and incorporates 
a corrective procedure designed to minimize the accumulation of round-off errors. 

Typically, the time step for the integration was so chosen that the maximum dis- 
tance moved during each step was less than one-tenth of a mesh interval. The error 
incurred a t  each step (using 8 figure calculations) was estimated to be O( relative 
to  the width of the cavity in the x direction. 

Although described in terms of the use of the velocity field for the construction of 
streamlines, the procedure can be used for the construction of the field lines of any 
solenoidal vector field. In  particular, since V.  < = 0 and < = V x v, vortex lines can 
readily be traced by replacing + and v by v and < respectively. 

The field lines presented in $ 4  are the end result of an exploratory process which 
involves the use of an interactive graphics display terminal connected to the computer 
in which the field-line calculations are performed. It is not possible to  generate auto- 
matically a set of field lines that will describe an entire flow field. Instead, each solution 
must be explored laboriously to select the most suitable field lines and then the most 
appropriate viewpoint. A considerable amount of computer time is required before 
each solution is thoroughly investigated, and in fact the exploration of each solution 
typically required of the order of three times the computer time used to generate the 
solution ! 

By updating the picture on the display after each increment of the line has been 
computed, the viewer is presented with a moving image of the growth of the line. In the 
case of streamlines, growing in constant time steps, the image sequence represents the 
movement of a fluid element. By photographing each image, this moving sequence can 
be recorded and a particularly striking feature of the resulting movie film is the repre- 
sentation of the velocity of the element. A continuous change of viewpoint with the 
track length held constant can result in an effective method of resolving ambiguity in 
the perspective transformation. A 16 mm film? Computer Simulation of Three-Dimen- 
sional Flow has been made which illustrates the effectiveness of this display medium in 
enhancing the interpretation of three-dimensional numerical solutions. 

Available on loan from the authors. 
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4. Discussion of results 
4.1. Two-dimensional $ow 

Before describing the three-dimensional solutions, it is necessary to consider the rele- 
vant two-dimensional predictions of the cross-sectional flow, as the three-dimensional 
end effects will depend significantly on the form of the flow far from each end wall. The 
two-dimensional model is in fact equivalent to a three-dimensional model with perfect- 
slip adiabatic boundaries a t  y = 0 and y = h, and it is convenient for the interpretation 
of the three-dimensional solutions to regard the two-dimensional solutions in this light. 
The conventional scalar velocity and stream function then correspond to the y com- 
ponents of < and + respectively. 

For a cavity with h, = 1, Elder (1965b) observed two secondary rolls a t  

Ra = 9.6 x lo6 

in a cavity filled with water (Pr = 7.14). Similar rolls were observed by de Vahl Davis 
(1968) in a numerical solution for the same aspect ratio and the conditions 

R~ = 1.5 105 

and Pr = lo3 and are also evident in solutions published by Fromm ( 197 1) for Ra = 1 O5 
and Pr = 1,  by Quon (1972) for R a  = 8 x lo5 and Pr = 7.14 and by Cormack, Leal & 
Seinfeld (1974) for Ra = 1.4 x lo5 and Pr = 6.983. 

I n  a square cavity, the secondary rolls do not result from an instability of the base 
flow but are a direct consequence of the convective distortion of the temperature field. 
The flow may be regarded as being driven by the generation of vorticity by horizontal 
temperature gradients. Positive y vorticity, which leads to clockwise rotation when 
viewed by looking in the + y direction, is generated by positive aO/ax. For Ra < lo4, 
asfax is positive over the whole interior region of the cross-section. Negative vorticity 
is produced within the viscous boundary layers and the ultimate form of the steady 
flow is determined by the transport balance governed by the y component of (4). As 
Ra increases, the development of thermal boundary layers intensifies aO/ax in the 
vicinity of the walls, and the convection within each layer leads to negative aO/ax in the 
centre of the cross-section. A vorticity sink thus separates the regions of concentrated 
vorticity generation, and, provided that viscous diffusion does not completely smear 
the distribution of vorticity, two secondary rolls are formed. 

Two-dimensional solutions obtained during the initial phases of this investigation 
indicate that reversed temperature gradients appear in square cavities if 

Ra > 3 x lo4, for 0.1 6 Pr < 100. 

However, viscous diffusion retards the developments of secondary rolls until 

Ra 2 6 x lo4. 

The solution for Ra = 1.5 x lo5 and Pr = 100, illustrated in figures 2(a )  and (b), 
exhibits these rolls. They are sufficiently strong to convect the temperature field to the 
extent that the isotherms are nearly horizontal in the centre of the cross-section. Note 
that the roll centres are on the same side of the horizontal centre-line as the regions of 
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FIGURE 2. Two-dimensional temperature (a, c and e) and stream-function (b ,  d andf) fields for 
Ra = 1 . 5 ~  106 and Pr = 100 (a and b ) ,  Pr = 0.71 (c  and d )  and Pr = 0.2 (e andf). Contour 
levels for 0 are 0.1 (0.1) 0.9. Contour levels for $ are ( b )  2 (2) 10, 11, 12, 12.5, 12.8, (d) 2 (2) 8, 9, 
10, 10.5, 10.7, (f) 2 (2) 6, 7, 8.2, 8.4, 8.6, 8.8. 
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X 

(4 (4 
FIGURE 3. Two-dimensional (a) temperature and ( b )  stream-function field for Ra = 1P and 

Pr = 0.71. Contour levels for B are 0.1 (0.1) 0.9 and for @ are 4, 8 (2) 16, 16.8, 17. 

large positive &3/8x (figure 2a).  This contrasts with the flow at Ra = 1.5 x los and 
Pr = 0.71, illustrated in figures 2 (c) and (d) ,  in which the roll centres have been dis- 
placed as a result of the increased convection of vorticity a t  the lower value of Pr. This 
observation is also supported by the numerical solutions of de Vahl Davis (1968) for 
Ba = 1.5 x lo5 and Pr = 100 and Fromm (1971) for Ra = lo6 and Pr = 1. It is inter- 
esting that this change in flow form with Pr occurs with very little change in the tem- 
perature field and hence in the rate of heat transfer, as reported by de Vahl Davis 
(1968). 

As Pr is further decreased, the distortion of the secondary rolls increases and their 
effect on the temperature field diminishes. Eventually the vorticity sink a t  the centre 
of the cross-section is strong enough to support the existence of a distinct, counter- 
rotating roll as shown in figures 2 ( e )  and (f) for Ra = 1.5 x los and Pr = 0.2. The fact 
that this roll is buoyancy-driven, rather than arising from shear between the two outer 
rolls, is evidenced by the fact that the greater shear but much smaller ae/ax which 
exist under the conditions of figures 2 (b)  and (d) do not generate such a roll. 

With increasing Ra, the secondary rolls intensify and their centres move towards the 
side walls. In  the case of a high Pr fluid the secondary motion persists as two rolls up to  
the onset of temporal instability as may also be seen in Quon’s (1972) solution and 
Elder’s (1965b) experiment. For Pr = 0.2, the present solutions indicate that the 
three-roll system of figure 2 (f) persists. However for unit-order Pr an intriguing 
phenomenon occurs which is illustrated by the solution for Ra = lo6 and Pr = 0.71 in 
figures 3(a) and (b). A central secondary roll exists which, unlike that in the low Pr 
flow, rotates in the same direction as the base flow. Examination of the solution from 
which the isotherms in figure 3 (a )  were prepared reveals that M/ax is small but positive 
in the centre of the cross-section (as a result of the convective effect of the flow in the 
secondary rolls), leading to the generation of clockwise (i.e. positive) vorticity in 
this region. The gradient is very weak and the roll does not exist at  higher values of 
Pr, when viscous diffusion is greater. For Ra >/ 3 x 105, the roll was observed for 
0.71 6 Pr 6 I .  
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In  cavities with h, 9 1,  it is well established that, when Ra exceeds a critical value, a 
vertical series of secondary rolls develops as a result of instability of the base flow with 
respect to disturbances that are periodic in z. The experiments of Elder (1965a) and 
the numerical solutions of de Vahl Davis & Mallinson (1975) suggest that this is true if 
h, 2 10. Rube1 & Landis (1969) published solutions for hz = 5 which exhibit secondary 
rolls that bear a marked resemblance to those occurring in a square cavity. Thus for 
h, 6 5 ,  the secondary motion is driven by buoyancy effects arising from the distortion 
of the temperature field by the flow, while, for h, >, 10, the secondary motion is the 
result of physical instability. Unfortunately, the three-dimensional solutions do not 
cover this interesting aspect of convection in a window cavity. For reasons that will 
be discussed later, solutions for h, = 5 could be obtained only for Ra 6 3 x lo4, which 
is considerably below the value of Ra at which secondary motion occurs owing to either 
mechanism. 

It should be noted that a 51 x 51 mesh was used to obtain the solutions presented in 
figures 2 and 3, whereas the three-dimensional solutions use a coarser cross-sectional 
mesh, typically 15 x 15. The finer mesh was used primarily to ensure thak the central 
roll in figure 3 ( b )  was not a spurious truncation-error effect. I n  fact several pairs of 
two-dimensional solutions using both meshes were obtained. As already mentioned, 
the form of the motion was unchanged but, of course, numerical values of the solution 
variables were affected by the mesh change. For example, for Ra = 1-5 x lo5 and 
Pr = 0.71, the maximum stream-function value changed from 12.59 in the 15 x 15 
solution to 10.78 in the 51 x 51 solution and the Nusselt number (see 94.5) changed 
from 5.44 to 5.10; for Ra = 106 and Pr = 0.71 the changes were 27.34 to 17.14 and 
8.60 to 9.12. The 15 x 15 mesh, although adequate at the lower Rayleigh number, is 
clearly only marginally satisfactory a t  the higher Rayleigh number. In  the.following 
discussion, the quantitative two-dimensional data used for comparison with the 
three-dimensional results were all obtained with the coarser mesh to eliminate mesh 
dependency from the comparison. 

4.2. Three-dimensional motion: Ra = lo4 
There has been little speculation concerning the nature of three-dimensional effects 
occurring in a nominally two-dimensional roll as a result of the presence of the end 
walls normal to the axis of the roll. Aziz (1965) presented solutions for the case of a roll 
in a cube heated from below but did not discuss the structure of the flow. Chorin (1968) 
considered only the initial stages of the transient growth of a roll after the onset of 
instability in a layer of fluid heated from below and did not give quantitative details 
of the final steady state. 

In fact, Davis (1967) has provided the only speculation in his discussion of the sys- 
tems of two-dimensional rolls predicted by his analysis of a finite box heated from 
below under conditions close t o  critical for the onset of fluid motion. He observed that 
the interaction of a roll with an end wall is similar to the interaction of a rotating mass 
of fluid with a rigid flat plate normal to the axis of rotation of the fluid, a problem that 
was considered analytically by Bodewadt (1 940). Bodewadt’s analysis indicates that 
an axial flow is induced. However, Davis argued that this flow would be small since it 
arises from nonlinear terms in the governing equations and he was considering small 
amplitude convection for which the governing equations are linear. Moreover, for 
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FIGURE 4. Streamlines through the points (0.45,0.1, 0.45) and (0.45, 1.9,0.45) in a window cavity 
with Ra = lo4, Pr = 1, h, = 2 and h, = 1. The viewpoint used in the perspective transforma- 
tion is ( -8 ,  -4, -3). 

small values of the local angular velocity, the boundary-layer thickness predicted by 
the Bodewadt theory is larger than the length of the roll; since the axial velocity must 
be zero a t  the end wall, Davis argued that for small rates of rotation the axial velocity 
throughout the roll must be very small. He concluded that, for small amplitude con- 
vection in a layer heated from below, three-dimensional effects are negligible. The 
validity of this conclusion will be challenged later. Davis was, however, correct in 
speculating that the presence of the end walls induces axial flow in a roll, thereby 
generating a three-dimensional motion. 

In  the window cavity, a single roll exists for Ru < 6 x lo4 and 0-1 < Pr < 100. The 
general form of the three-dimensionaI motion resulting from the superposition of the 
axial flow on the cross-sectional flow is displayed by the streamlines illustrated in 
figure 4. The box has been viewed from the same point as that used to obtain figure 1, so 
that the origin of the co-ordinate system is located on the nearest upper vertex of the 
box. This viewpoint was used to obtain all the perspective views of the h, = 2 and 
h, = 1 cavity. 

The axial flow is directed away from each end wall, so that the streamlines spiral 
towards the centre of the box. In contrast to  the infinite system postulated by Bode- 
wadt, this axial flow must be countered by a return flow in x and z boundary layers. 
The streamlines spiral outwards near the y = &h, plane, return to the end walls in these 
layers and then spiral inwards near the end walls to  form closed paths which lie on 
torus-like surfaces. 

4.2.1. On the closure of the streamlines. The streamline illustrated in figure 4 returns 
to within a very small distance from the starting point of the track after only one 
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circuit of the toroidal path and appears, therefore, to support the concept that the 
streamlines are closed. The conditions that V. v = 0 and the normal component of v a t  
each boundary is zero lead to the conclusion that the streamlines must close, but as 
Truesdell (1954, p. 17) takes care to point out, a streamline through a given point may 
pass near that point many times before actual closure. Thus it is possible that the 
streamlines make many traverses of the type illustrated in figure 4 before closing. 

The velocity field is single valued and streamlines cannot intersect. It follows that if 
a streamline makes several traverses then each traverse must lie on the same toroidal 
surface. If not, each successive traverse would lie on a smaller or larger surface which is 
contained by or contains the surface on which the previous traverse was made. In 
either case it is not possible for the line to return to the original surface without inter- 
section of streamlines at some point in the cavity. Multiple traverses on the same sur- 
face without streamline intersection are, however, possible and cannot be rejected 
a priori . 

The numerical tracking procedure is not capable of the accuracy required to investi- 
gate the question of closure of the streamlines. The closure indicated in figure 4 must be 
regarded as being accidental, bearing in mind that over 13 000 time steps were involved 
in computing the streamline. The majority of streamlines computed so far do not 
exhibit closure after only one such traverse. 

4.2.2. The inertial end effect. The fluid adjacent to the end wall is stationary. This 
results in two mechanisms by which a three-dimensional flow can be produced. The 
first, which will be referred to here as inertial, is the kinematical interaction of the 
rotating fluid with the stationary plane as modelled by Bodewadt (1940). The second 
is thermal and results from axial temperature gradients (i.e. in the direction normal 
to the end walls) produced near the ends of the cavity by variations in the flow field. 
In this subsection we consider the first mechanism. 

A more accurate model of the interaction of a rotating roll with an end wall than 
Bodewadt’s infinite system is that of a rotating cylinder with a stationary end wall, 
for which numerical solutions were published by Pa0 (1970). At least for the case of a 
low Rayleigh number single roll, the approximation of the cross-sectional convection 
flow far from the end walls by a uniform rotation is tolerably good and Pao’s solution 
may be used to estimate the magnitude of the end effect in either half of the cavity. In 
Pao’s analysis, the flow depends upon a Reynolds number R e  = Q‘R2v, where R and 
Q’ are the radius and angular velocity of the cylinder respectively. From our results, 
we may first estimate Q (a non-dimensional angular velocity) by taking averages 
along the lines (x, &,, 0.5) and (0.5, +hu, 2) .  Then, recalling that L and KL were used 
to construct our non-dimensional variables, we obtain Q‘ = Q K / L ~ .  Hence we may 
compute a Reynolds number 

Re = (QK/L~)  (R2/v)  = !2/4Pr, 

where the ‘radius’ of our square cross-section has been taken as +L. 
In  table 1, Reynolds numbers for several values of P r  and Ra = lo4 are given to- 

gether with the maximum value in each case of the y velocity component on the axis of 
the roll, denoted by E x i a l .  It is immediately evident that R e  is nearly inversely pro- 
portional to P r .  The magnitude of the axial flow can therefore also be expected to 
increase with decreasing Pr (for a given value of Ra) and this is supported by the 
values of K x i a l  and by the streamlines illustrated in figure 5. 
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FIGURE 5 .  Streamlines through the points (0.4, 0.1, 0.4) and (0.4, 0-9, 0.4) with Ra = lo4, 
h, = 2 and h, = 1. (a) PT = 0.2, (a) PT = 100. 

The only solution published by Pao (1 970) for which the maximum value of the axial 
velocity component was quoted was for Re = 100 and a cylinder length-to-radius 
ratio of 1.  To compare his result with the end effect in a window cavity, a further 
solution was obtained with Ra = lo4, Pr = 0.1, h, = 1 and hz = 1. Because of the 
nonlinear dependence of R on Pr and h, it was difficult to obtain a solution for precisely 
the required value of Re. The estimated value of R for this solution is 37.6, leading to 
Re = 94. Pao predicted a maximum value of 0.1 for his non-dimensional axial velocity 
component. Noting that his scale factor for velocity was R'R ( = QKR/L2) whereas our 
scale factor is KIL, this prediction corresponds to a non-dimensional velocity of 
O.lRR/L = 1.88 in our notation. Klaxial in our convection solution is 2.47, which is 
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Pr R Re X X i d  

0.1 40 100 4.065 
0.2 43 54 3.950 
0.7 55 20 2.286 
1 .o 55 14 1.870 

100.0 58 0.15 0.436 

TABLE 1 .  Estimates of R and Re for several values of Pr for a cavity with Ra = 104, h, = 2 and 
h, = 1. is the maximum velocity along the axis of the roll. 

.V 
r 

Negative (, Positive (, 

0.7 

0.3 

(b)  
FIGURE 6. Longitudinal temperature variation in a window cavity with Ra = 104, Pr = 100, 
h, = 2 and h, = 1.  (a)  0 in the plane z = 0.5;  contour levels are 0.3 (0.1) 0-7. ( b )  a0/ay in the 
plane y = 0.14; contour levels are -0.4 (0.1) 0.4. 



Three-dimensional natural convection in a box 15 

significantly higher than Pao's prediction: higher than can be accounted for by the 
difference between the two values of Re. In addition, Pao's results indicate that for 
Re < 10 nonlinear effects are insignificant and the solution variables depend linearly 
on Re. This is not supported by the results in table 1,  the last two lines of which show 
Reynolds numbers in the ratio of about 100 but axial velocities in the ratio of about 4. 
It is clear that the inertial model accounts for only part of the present end effect. 

4.2.3. The thermal end eflect. Near they = 0 and y = hu boundaries, the fluid moves 
more slowly than it does far from the boundary, and the convection of heat is reduced. 
This reduction in convection near the end walls produces gradients of 0 in the y 
direction. In figure 6 the distribution of 0 near the end walls is indicated by two 
contour maps. That in figure 6 (a )  shows the temperature field on the plane x = 0.5 and 
that in figure 6 ( b )  the aO/ay field in the plane y = 0.14, in which the maximum value of 
aOlay occurs. Near the y = 0 boundary, the variation of aO/ay is such that positive 
gradients (leading to negative c1) predominate in the upper half of the cavity and 
negative gradients in the lower half. In figure 6 (a )  the reader is looking along the x axis ; 
the predominant vorticity sign in each quarter of the cavity has been indicated. The 
generation of is such that the inertially induced axial flow is augmented by the 
thermal end effect. 

If Pao's prediction of a linear dependence of the flow variables on Re for Re < 10 is 
accepted, a dependence which can only refer to the inertial end effect, then the flow 
field at  Pr = 100, for which Re < 1,  is essentially that arising from the thermal end 
effect. Moreover, the 0 field changes insignificantly with Pr for Pr 2 0.2. For example, 
the maximum value of aO/ay changes from 0.415 at Pr = 100 to 0.420 at Pr = 0.2 and 
the contour maps for P r  = 0.2 are virtually indistinguishable from those in figure 6. 
For Pr < 0.2, the nonlinear effects of P r  on the convection become more significant 
and for P r  = 0-1 the maximum gradient is reduced to 0.373. At least for 0.2 < Pr < 100 
it is safe to assert that the thermal effect is independent of Pr. 

The total longitudinal motion at  any Pr  is thus the sum of a constant thermal effect 
and a Pr-dependent inertial effect. The magnitude of the constant thermal effect can 
be deduced from a high Prandtl number solution, for which the inertial effect should be 
negligible. Thus table 1 shows that, for P r  = 100 and h, = 2, the value of Klaxial is 0.44. 
Noting (e.g. from figure 6a)  that the thickness of the thermal boundary layer at each 
end of the cavity is about 0.25, this value may also be taken as applying to a cavity 
with h, = 1 and moreover must be an estimate of the thermal effect at  any Pr. When 
we add Pao's estimate of 1-88 for the inertial end effect a t  P r  = 0.1 (see 54.2.2 above), 
we obtain a total axial velocity of 2.32, in quite good agreement with the value of 2.47 
found in our convection solution. 

4.2.4. Vortex lines. In a two-dimensional flow, the vortex lines are normal to the 
plane of the flow and are infinite in length. In the core of a roll where the vorticity 
is positive, the lines are in the + y direction; in the viscous boundary layers they are 
in the opposite direction. 

In the three-dimensional case, the no-slip boundary condition deflects the vortex 
lines a t  the end walls, so that they form closed loops. The vorticity field is solenoidal 
and subject to the same general comments regarding closure as is the velocity field. 
However, the symmetry of the field about the y = ihu plane guarantees that the vortex 
lines form single closed loops. 

Typical vortex lines for two of the Ra = 104 solutions are illustrated in figure 7. In 
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FIGURE 7. Vortex lines passing through points on the line (2, 1.0, 0.5) in window cavities with 
Ra = lo4, h, = 2 and h, = 1.  (a) Pr = 0.2, (b)  Pr = 100. 

each diagram the vortex lines pass through points on the line ( x , l ,  4). The solution in 
figure 7 ( a )  is for Pr = 0.2 and the vortex lines are noticeably twisted near each end 
wall, having been convected by the rotating flow as they are deflected to conform with 
the requirements of the no-slip boundary condition. Twisting of vortex lines in this 
manner produces a velocity component along the axis of twist. In contrast, the lines in 
figure 7 ( b )  for Pr = 100 are not twisted, reflecting the fact that the convection of 
vorticity is negligible a t  the higher value of Pr. The vortex lines in this way clearly 
illustrate the mechanism of the inertial effect as being that of the convection of vor- 
ticity by the velocity field (thereby justifying the term inertial) and confirm the con- 
clusion that at  Pr = 100 the inertial effect is negligible. 



Three-dim,ensional natural convection in a box 17 

FIQURE 8. Flow in a window cavity with Ra = 1.5 x 105, Pr = 0.71, h, = 2 and h, = 1. (a) 
Streamlines through the points (0.5, 0.1, 0.51) and (0.5, 1-9, 0.51), showing the forward flow. 
(b )  Streamlines through the points (0.7, 0.8, 0.35) and (0.7, 1.2, 0.35), showing the reverse 
flow. 
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FIGURE 9. Reverse flow in a window cavity with Ra = 5 x lo5, Pr = 0.71, h, = 2 and h, = 1. 

FIGURE 10. Flow in a cavity with Ra = 1.5 x 105, Pr = 100, h, = 2 and h, = 1. The streamline 
in the left half of the cavity belongs to the forward flow adjacent to the end wall. The streamline 
in the right half belongs to the reverse flow. 

4.3. Three-dimensional motion: Ra 6 x lo4 

As the Rayleigh number is increased, the structure of the three-dimensional flow is 
complicated by the occurrence of secondary motion. For Ra = 1.5 x lo5, Pr = 0.71, 
h, = 2 and h, = 1 ,  the cross-sectional flow far from the end walls (i.e. viewed along the 
y axis) contains two secondary rolls similar to those shown in figure 2 (d) .  Some aspects 
of the three-dimensional flow are illustrated in figure 8. The streamlines in figure 8 (a )  
indicate that a strong axial flow exists near each end wall. The main difference between 
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(h )  
FIGURE 11. Longitudinal temperature variation in a window cavity with Ra = 1.5 x lo5, 
Pr = 100, h,, = 2 and h, = 1. (a) B in the plane x = 0.5;  contour levels are 0.3 (0.1) 0.7. ( b )  
@/a in the plane y = 0.14; contour levels are -0 .5  (0.1) 0.5. 

this flow and that in the single-roll flow a t  Ra = lo4 is that each of the secondary rolls 
forms a spiral centre for the inward moving fluid. 

The end effect is, however, confined to the vicinity of the end wall and is separated 
from the centre-plane by a reverse ff ow which is illustrated by the streamlines in figure 
8 ( b ) .  (Note the convention introduced here: that a forward ffow has the inner axial 
flow moving away from the nearer end wall.) This streamline was started from a point 
which is almost on the axis of the secondary roll adjacent to the hot wall, and near the 
mid-plane y = ahl, of the box. It spirals back towards the end wall, meets the opposing 
forward flow and spirals out to the boundary layers, where it returns towards the mid- 
plane. The streamline in the left half of the cavity was terminated a t  this stage, but the 
continuation to form a nearly closed path is shown as a mirror image in the right 
half of the cavity. 

For Pr = 0-71, this flow structureexistsfor 6 x lo4 < R a  < 3 x lo5. For Ra > 3 x lo5, 
the cross-sectional flow develops a central secondary roll as in the two-dimensional 
solution of figure 3 ( b ) .  In  this flow all three secondary rolls act as spiral centres for the 
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(b)  

FIUURE 12. (a )  Streamline through the point (0.49, 0.1, 0.49) in a cavity with Ra = 1.5 x los, 
Pr = 0,2,  h, = 2 and h, = 1.  (b)  The first part of the streamline in (a)  viewed by looking parallel 
to the y axis. 

reverse flow. The streamlines in figure 9 for R a  = 5 x lo5 and Pr  = 0-71 both belong 
to the reverse flow. The streamline in the left half of the cavity has used the central roll 
as a spiral centre whilst that in the right half has used the roll adjacent to the cold 
wall. 

Detailed examination of the solution has indicated that the velocity along the axis 
of each outer roll is directed towards they = frh, plane along the entire length of the roll 
and is zero a t  the boundary between the forward and reverse flows. Streamline tracks 
reveal that a self-contained forward flow exists within the envelope defined approxi- 
mately by the first part of the streamline in the right half of figure 9, the vertical plane 
through the point where that streamline begins to spiral outwards, and the y = &, 
plane (i.e. within the reverse flow illustrated). This Aow is very weak; it was impossible 
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FIGURE 13. Variation of v along the horizontal axis of a cavity with Ra = 5 x lo5, Pr = 0.71 and 

k ,  = 1. (a )  h,  = 1. (a) h ,  = 2. (c )  h ,  = 5 .  

to obtain streamlines that indicated the form of the flow and were capable of satis- 
factory reproduction. 

As in the case of the Ra = 105 flow, a change in Pr at constant Ra has a considerable 
effect on the three-dimensional flow. Several solutions for Ra = 1.5 x lo5 and various 
values of Pr were obtained. For Pr 2 10, the axial flow is independent of Pr and the 
three-dimensional motion has the structure indicated by the streamlines in figure 10. 
The motion in each half of the cavity consists of two distinct flows as in the Pr = 0.71 
solution. However, the reverse flow nearly fills the half-cavity and the fluid spirals 
from the y = $hu plane to the end walls using either secondary roll as a spiral centre. 
The forward flow is confined to a small torus-shaped region at the end of the cavity. In 
the interests of clarity, only one streamline has been drawn in each half of the cavity. 
In the left half a forward torus-shaped streamline has been constructed. In the right 
half, the form of the reverse flow is shown. The space taken by the forward flow in that 
half of the cavity, and the manner in which the two flows jointly occupy each half- 
cavity, can be seen. The reverse flow penetrates into the region of forward flow, so that 
the surface separating the two regions is not plane but convex to  the ends of the 
cavity. 

The invariance of the flow with Pr for Pr 2 10 suggests that the flow illustrated in 
figure 10 is purely the result of longitudinal buoyancy effects. Isotherms for the plane 
x = 4 are shown in figure 1 1  (a )  and indicate that, near the ends of the cavity, the sign 
of at?/ay near the axis of rotation is opposite to that near the z boundaries. This is 
confirmed by the contours of a0py in the plane y = 0.14 iilustrated in figure 11 (b ) .  The 
forward spiral results from the strong gradients in the lower left and upper right corners 
of the cross-section, where the effects of reduced convection near the end walls are 
greatest (cf. figure 2a). The reverse flow is the result of gradients induced in the centre 
of the cross-section, where the convective effects of the secondary rolls are greatest. 
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FIGURE 14. Streamlines through the points (0.04, 0.04, 2-5) and (0.04, 4.96, 2.5) in a window 
cavity with Ra = lo4, Pr = 0.71, h, = 5 and h, = 5. Viewpoint is ( -  30, - 15, - 10). 

The flow in figure 8 for Pr = 0.71 represents a state intermediate between the infinite 
Pr flow and that a t  very small Pr, when the inertial end effect is so strong that the 
forward spiral completely fills each half of the cavity. The latter case is illustrated by 
the streamline in figure 12. The cross-sectional flow in the y = &hU plane is a system of 
three rolls similar to that in figure 2 (f); each secondary roll acts as a spiral centre. The 
interesting feature of the streamline illustrated in figure 12 (b) is that, because it uses 
the counter-rotating central roll as a spiral centre, it initially spirals anticlockwise 
(in the sense of figure 12b)  before reaching the clockwise main flow. 

4.4. The dependence of the three-dimensionalJlow on h, and h, 
So far, the discussion has been almost entirely devoted to a cavity with h ,  = 2 and 
h, = 1. Although a detailed discussion of the influence of either aspect ratio on the flow 
would require many more solutions than have been obtained, the following observa- 
tions have been made from two groups of solutions a t  other aspect ratios. The solutions 
in the first group have h, = 1 and 1 < h, < 5 so that the effect of the longitudinal aspect 
ratio on the flow in a cavity of square cross-section may be examined. In  the second 
group, h, = 5 and h, = 5 so that the solutions represent more closely the flow in a real 
double-glazed window. 

I n  general, both the strength of the rotational flow and the form and strength of the 
end effect depend on the longitudinal aspect ratio. The driving buoyancy forces 
established by the temperature difference between the isothermal walls must overcome 
the viscous drag a t  each end wall. The strength of the cross-sectional flow as measured, 
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FIGURE 15. Flow in a window cavity with Ra = 3 x lo4, Pr = 1, h, = 5 and h, = 5. (a) The 
streamlines at  each end of the cavity indicate a strong forward flow. In the right half of the 
cavity a streamline indicating a weak forward flow adjacent to the centre-plane has been 
included. (6) These streamlines indicate the reverse flow of intermediate strength that exists 
between the two forward flows shown in (a) .  
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Ra Pr h" $Y" $E 
1.5 x 105 1 1 13.0 13-3 
1.5 x 105 1 2 13-2 13.3 
1.5 x 105 1 5 13.3 13.3 

5 x 105 0.71 1 18-4 19.8 
5 x  lo6 0.71 2 19.7 19.8 
5 x 105 0.71 5 19.8 19.8 

TABLE 2. Comparison of the maxima of $, in the plane y = &hg with the two-dimensional 
stream-function maxima. 

for example, by the maximum value of @2 in the y = Sh, plane, denoted by @Tax, will 
depend on the magnitude of the drag relative to the total buoyancy torque applied 
along the length of the cavity. @Fa" can be expected to decrease with decreasing h,. 

are listed for h, = 1, 2 and 5 and for two combinations of 
Ra and Pr, namely Ra = 1.5 x 105 and Pr = 1, and Ra = 5 x lo5 and Pr = 0.71. For 
comparison, the corresponding value of the stream-function maximum as predicted 
by a two-dimensional solution with the same cross-sectional mesh is also given. I n  every 
case the strength of the flow in the y = $h, plane in the three-dimensional solutions is 
less than or equal to that in the two-dimensional flow. The strength of the flow is not 
significantly affected for h, 2 2. But for h, = 1 the reduction in the case of the solution 
for Ra = 1.5 x lo5 is 2.3 yo of the two-dimensional strength, increasing to 7 % in the 
case of the stronger flow a t  Ra = 5 x 105.  

The form of the three-dimensional flow in a cavity with h, 2 2 for both combinations 
of Ra and Pr is that of a system of forward and reverse flows as illustrated in figure 8. 
The solutions for h, = 2 and h, = 5 suggest that, once the reverse flow is established, 
the penetration of the forward flow into the cavity is independent of h,. This is demon- 
strated in figure 13 by the distributions of v on the line (0-5, y, 0.5) in the semi-cavity 
0 6 y < ah, for the three values of h, and for Ra = 5 x 105 and Pr = 0.71. For h, = 2 
and h, = 5, the penetration of the forward spiral is approximately 0.6. In  a cavity with 
h, = 1, the reverse flow does not occur. 

I n  the case of infinite Pr, the forward-flow penetration distance is determined pri- 
marily by the thickness of the thermal boundary layer, which, as indicated by the 
results in the next subsection, is less than 0.4. The flow can be expected to be sub- 
stantially the same as that illustrated in figure 10. The torus-shaped forward flow 
remains fixed in size irrespective of the value of h,. 

An increase in h, reveals an interesting phenomenon. At Ra = lo4 and Pr = 0.71 
in a cavity with h, = 5 and h, = 5, the flow resembles that in the h, = 1 cavity in that 
the end effect is a single axial flow embedded in the single-roll cross-sectional flow. A 
single spiral system, illustrated in figure 14, is produced. However, for Ra > lo4 the 
axial flow decomposes into a series of forward and reverse spirals, despite the fact 
that  the cross-sectional flow is known to be a single roll (see Rube1 & Landis 1969). For 
example, a t  Ra = 3 x lo4 and Pr = 1 there are three distinct flows in each half of the 
cavity. The forward flows a t  the ends of the cavity are by far the strongest, and corres- 
pond to large peaks in the distribution of v(0.5, y, 2.5). Typical streamlines are illus- 
trated in figure 15. Reverse flows (figure 15 b )  separate the end flows from a further pair 
of forward flows adjacent to the plane y = ih,. One streamline for the right-hand inner 

I n  table 2, values of 
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FIGURE 16. Temperature field in a cavity with h, = h, = 5. (a, b)  R a  = lo* and Pr = 0.71. 
(c, d )  R a  = 3 x  lo4 and Pr = 1. (a, c) 0 in the plane y = 2.5; contour levels are 0.1 (0.1) 0.9. 
(b ,  d )  a0/@ in the plane y = 0.37; contour levels in ( b )  are - 0.2 (0.1) 0.2; contour levels in ( d )  &re 
-0.15 (0.05) 0.15. 

forward flow is shown in figure 15. The closeness of the spacing between adjacent turns 
of the spiral emphasizes the weakness of the axial motion in this innermost forward flow. 

The occurrence of the multiple longitudinal flows appears to be associated with the 
development of a region of negative aO/ax in the centre of the cavity cross-section as 
shown by the isotherms in the plane y = 2.5 for the Ra = 3 x l o 4  solution (figure 1 6 ~ ) .  
These isotherms are to be compared with the corresponding isotherms for the Ra = lo4 
solution, shown in figure 16 (a) .  At the lower value of Ra the contours of a8/ay in the 
plane y = 0.37 indicate that aO/ay is predominantly positive in the upper half of the 
cross-section whereas the contours for the same plane in the Ra = 3 x lo4 solution 
indicate that the sign of a8/ay is such that the cl generated will oppose the inertial 
effect. This explains the confinement of the forward flow near the end wall in the case 
of the greater value of Ra. 

The multiplicity of the longitudinal flow is associated with spatial oscillations of the 
temperature field in the y direction which may be the result of a physical instability of 
the flow with respect to  disturbances that are periodic in y as is the case in the inclined 
layer studied by Hart (1971). Certainly, attempts here to obtain solutions for 

Ra 2 3 x lo4 
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'he functions Nu,(y) for a cavity with Pr = 0.71, h,  = 2 and h, = 1 
for several values of Ra. 

failed not from numerical instability but from an inability to reach a steady solution: 
this suggests a physical instability with respect to travelling disturbances. 

4.5. The effect of the three-dimensional motion on heat transfer 

The non-dimensional local heat flux through a boundary may be represented by a 
NusseIt number 

NU = aB/an, (12) 

where n is the co-ordinate normal to the boundary. On the isothermal wall a t  x = 0 

Nu(y ,  Z) = [%'/ax] + = o .  

In  laboratory experiments, the estimation of the total heat transfer through the cavity 
is often the prime objective and may in fact be the only parameter measured. For the 
wall a t  x = 0, the total flux is given by 

h, h, Nuav = johz~ohy Nu@, z )  d y  dz ,  

where NuaV is the average Nusselt number for the wall. In  a two-dimensional model, 
the local heat flux is a function only of 2 and the average flux, denoted here by NuZD, 
is given by 

h,Nu,D = johzNu(z) dz .  
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Ra 

104 2.31 2-20  2-32  - 4.8 0.4 
3 x 104 3.32 3 .18  3.33 - 4.2 0 . 3  
6 x lo4  4.11 4 .00  4 .14  - 2.7 0.7 

1.5 x 105 5.28  5.14 5 . 3 0  - 2.7 0.4 
3 x 106 6.67 6.53 6 .69  - 2.1 0 . 3  
5 x  105 7.58 7 . 4 3  7 .62  - 2.0 0.5 
1 x 106 8.59 8.37 8-67 - 2-6 0.9 

TABLE 3 .  Comparison of Nu,, arid Nu,, with Nu,, for a cavity with h,  = 2 ,  h, = 1 ,  
Pr = 0.71 and l o 4  < Ra < lo6. 

In  the three-dimensional model it is informative to compute the vertical average of the 
Nusselt number N u ,  a t  any value of y :  

h, Nu,(y) = Nu(Y, X )  dz .  Lh2 
Numerically, the local heat flux was estimated by a three-point forward-difference 
approximation to  the derivative in (12).  The composite trapezoidal rule was then used 
to compute the averages. 

The function Nu,(y) is shown in figure 17 for a cavity with h, = 2 and hz = 1 for 
Pr = 0.71 and several values of Ra. Corresponding values o f  NUav, Nu,, (the value 
of Nu,(y) a t  y = &hu) and the two-dimensional estimate N u ~ D  are listed in table 3. 
Nu,(y) decreases as each end wall is approached and indicates the extent of the thermal 
boundary layer, in which convection of heat is reduced. As Ra increases, the thickness 
of this layer decreases. 

As shown in figure 17, Nu,(y) increases as y+ 0 or y - f  2 until the end boundary layer 
is reached. The gradual increase results from the increasing magnitude of the longi- 
tudinal velocity component in the boundary layer as the end wall is approached. The 
oscillation in Nu,(y) for Ra = 106 is probably caused by truncation errors associated 
with the finite-difference approximations and indicates that a finer mesh is required 
to model the flow accurately for Ra > lo6. 

The average Nusselt number is, in every case, lower than that predicted by the two- 
dimensional model. With the exception of the Ra = lo6 result, the percentage changes 
listed in table 3 show that the end effect has a decreasing influence on Nuav as the 
Rayleigh number increases; this can be attributed to the reduction in the thickness of 
the end-wall boundary layer with increasing Ra. An interesting observation is that 
Nu,, is always greater than NuZD,  albeit in many cases by a very small amount. This 
contrasts with the fact that $pax, and hence the volume flux in this plane, is always 
less than the two-dimensional $La,,. This shows that, outside the thermal boundary 
layer a t  the ends of the cavity, the contribution of the axial flow to the convection of 
heat is more than sufficient to offset the influence of the reduction of the cross-sectional 
flow by the drag induced by the end walls. 

Predictably, the relative difference between Nuav and NU,, is inversely dependent 
on h, as the results in table 4 confirm. This trend is superimposed on the Rayleigh 
number dependence, so that the greatest differences occur for small Ra and h,. An 
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FIGURE 18. The function Nu,(y) in a cavity with h, = 2 and h, = 1.  The lower group of curves 
is for Ra = lo4 and the upper group is for Ra = 1.5 x lo6. Values of Pr are marked on the figure. 

interesting observation is that Nu,, is a better estimate of Nu,, than it is of Nurtv; but 
it is the latter that is measured in a physical experiment. 

If Pr is varied whilst all other parameters are held constant, the axial flow increases 
with decreasing Pr. For the single-roll flow a t  Ra = lo4 the effect on N u ,  is negligible 
for 0.71 < Pr < 100 (figure 18) and a slight reduction in heat transfer is evident for 
Pr = 0.2; this is largely the result of changes in the cross-sectional flow. At 

RU = 1.5 x 105 

the changes in the axial flow with Pr have a much greater effect on N u ,  for 

0.2 < Pr < I .  

When Pr = 0.2, the forward end effect fills the semi-cavity. The large peak in N u ,  
corresponds to large v in the boundary layers near the end of the cavity. The peaks are 
small in the curve for Pr = 1, when the flow consists of forward and reverse flow, and 
are absent when the thermally driven reverse flow nearly fills the cavity a t  Pr = 100. 
The corresponding Nusselt numbers are listed in table 5. For low Pr, Nu,, is less than 
NuZD, in contrast to the situation a t  higher values of Pr. For Pr < 0-2, the end effect 
decreases the strength of the cross-sectional flow considerably; the resultant reduc- 
tion in heat transfer more than counteracts the increase due to the axial velocity 
component,. 

The two solutions a t  h, = ha = 5 indicate that N u ,  is essentially constant over 80 yo 
of the length of the cavity and displays peaks a t  each end of the cavity, where the axial 
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A 1 5.54 5.31 5.71 - 4.2 3.1 
A 2 5.54 5.37 5.55 - 3.1 0.2 
A 5 5.54 5.41 5.54 - 2.3 0.0 
B 1 7.58 7.37 7.77 - 2.8 2.5 
B 2 7.58 7.43 7.62 - 2.0 0.5 
B 5 7.58 7.52 7.59 - 0.8 0.1 

TABLE 4. Comparison of Nu,, and Nu,, with Nu,, for cavities with 1 d h, < 5 and h, = 1 for 
two combinations of R a  and Pr. I n  case A ,  R a  = 1.5 x lo5 and Pr = 1.  In  case B, R a  = 
5 x  lo5 and Pr = 0.71. 

R a  

1 0 4  0-2 2.21 2.08 2-19 - 5.9 - 0.9 
104 1.0 2.32 2.20 2.32 - 5.1 0.0 
104 100 2.30 2.18 2.31 - 5.2 0.4 

1.5 x 105 0.2 5.11 4.89 5.00 - 4.3 - 2.2 
1.5 x 105 1 5.54 5.37 5.55 - 3.1 0.2 
1 - 5 ~  105 100 5-69 5.52 5.72 - 3.0 0-5 

TABLE 5. Effect of Pr on the comparison of Nu,, and Nu,, with Nu,, for a cavity 
with h, = 2 and h, = 1. 

flow is large. The three-dimensional average Nusselt number is within 2.5% of the 
two-dimensional estimate in both cases and Nu,, and Nu,, agree to within three 
significant figures. 

5. Conclusions 
The solutions to  the problem of natural convection in a box presented here have 

revealed the existence of a three-dimensional end effect, the form of which depends 
delicately on the governing parameters. The effect arises from two mechanisms. An 
inertial mechanism dominates when Pr is small, whereas, when Pr is large, this mech- 
anism diminishes and a weaker thermal effect dominates. 

In  terms of the average Nusselt number, which is often the end result of an experi- 
mental programme, the longitudinal motion has greatest relative effect for low Ra, 
small h, and low Pr. It has least effect for a given value of Ra when h, and Pr are large. 
In  all cases, the two-dimensional estimate of the Nusselt number is a better estimate 
of the vertical average a t  the centre of a three-dimensional cavity than it is of the 
overall average. 

In  the single-roll flow for Ra N lo4, the end effect in each half of the cavity produces 
an axial flow which is always directed towards the centre of the cavity. At the onset of 
secondary motion in a cavity with h, = 1 and the development of negative aO/ax in a 
cavity with h, = 5 ,  the longitudinal motion decomposes into multiple flows. For the 
case of a cavity filled with air, the numerical solutions predict that the end effect is 
confined to the vicinity of the end walls for Ra 3 6 x lo4, and is separated from the 
centre of the cavity by a weak reverse flow which can be regarded as being essentially 
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two-dimensional. For 6 x lo4 < Ra < 106 the end effect penetrates a distance which is 
less than 0.6 of the cavity width between the isothermal walls: provided h, 2 1.2, 
there will be some region of the cavity in which the flow is nearly two-dimensional. I n  a 
cavity filled with a high Prandtl number fluid, the end effect is purely thermal and is 
confined to a thin region adjacent to the end walls. The prediction of the numerical 
solutions is that for high Ra and high Pr the two-dimensional model is adequate 
provided h, > 1.  

Finally, the conclusion reached by Davis (1967), that axial flow in small amplitude 
convection rolls in finite cavities is negligible, must be regarded as being incorrect for 
rolls adjacent to a solid boundary. As Ra -+ 0, the rate of rotation of the cross-sectional 
flow becomes linearly dependent on Ra.  As predicted by Pao, the axial flow for small 
Re is also linearly dependent on Re and it follows that the end effect depends linearly 
on Ra. Hence as Ra + 0 the magnitude of the axial flow asymptotes to a constant 
fraction of the cross-sectional flow. The numerical results presented herein suggest 
t,hat this fraction will certainly be large enough to ensure that the axial flow is not 
negligible, especially for P r  N 1.  

The authors are grateful for the assistance of Mr A. D. Graham during the prepara- 
tion of the diagrams; and for the support provided by a grant from the Australian 
Research Grants Committee. 
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